Tricky (First part of video)

1) Rosie is working out $93 \div 3$ using a place value chart.

Tens	Ones
10	1
10	1
10	1

Complete the division.
$93 \div 3=$ \square
2) Use place value counters to complete the divisions.
a) $66 \div 3=$ \square
d) $48 \div 4=$ \square
b) $86 \div 2=$ \square
e) \square $=39 \div 3$
c) $50 \div 5=$ \square
f) $84 \div 4=$ \square
4) Use place value counters to complete the divisions.
a) $72 \div 3=$ \square
d) $48 \div 6=$ \square
b) $92 \div 4=$ \square
c) $65 \div 5=$ \square
e) \square $=45 \div 3$
e) \square

Trickier (second part of video)

a) $42 \div 3=$ \square
b) $96 \div 4=$ \square

c) $85 \div 5=$

d)

Jack is dividing 84 by 4 using place value counters

First, he divides the tens.
Then, he divides the ones

Kim has 92 beads.
She wants to share them equally between 4 friends.
How many beads will each friend get?

Use Jack's method to calculate:

$$
69 \div 3 \quad 88 \div 4 \quad 96 \div 3
$$

Trickiest - Complete Jack calculation from Trickier first before moving on to the challenges below
Rosie is calculating 96 divided by 4 using place value counters.
First, she divides the tens. She has one ten remaining so she
exchanges one ten for ten ones. Then, she divides the ones.

Write $<,>$ or $=$ to make the statements correct.
$96 \div 8$

$72 \div 6$
$51 \div 3$

$64 \div 4$

$98 \div 7$
 $95 \div 5$

There are some extension questions on the sheet below

Dora is calculating $72 \div 3$
Before she starts, she says the calculation will involve an exchange.

Do you agree?
Explain why.
$69 \div 3 \bigcirc 96 \div 3$
$96 \div 4$
 $96 \div 3$
$91 \div 7 \bigcirc 84 \div 6$

Eva has 96 sweets.
She shares them into equal groups.
She has no sweets left over.
How many groups could Eva have shared her sweets into?

ANSWERS

Tricky
b) Complete the division.
$93 \div 3=31$
(2) Use place value counters to complete the divisions.
a) $72 \div 3=$ 24
d) $48 \div 6=8$

Use place value counters to complete the divisions.
b) $92 \div 4=$ 23
b) $92 \div 4=23$
e)

b) $86 \div 2=43$
c) $50 \div 5=10$
e) \square $=39 \div 3$
f) $84 \div 4=$ \square
d) $48 \div 4=12$
c) $65 \div 5=13$

Trickier

a) $42 \div 3=$ \square
b) $96 \div 4=24$

c) $85 \div 5=17$
d) $84 \div 6=14$

$69 \div 3=23$
$88 \div 4=22$
Kim has 92 beads.
She wants to share them equally between 4 friends.
How many beads will each friend get?
$96 \div 3=32$

Trickiest

$65 \div 5=13$

$$
96 \div 8(=) 72 \div 6
$$

$$
95 \div 5(<) 63 \div 3
$$

$75 \div 5=15$
$84 \div 6=14$
$51 \div 3$

$64 \div 4$

$95 \div 5$

Dora is calculating $72 \div 3$ Before she starts, she says the calculation will involve an exchange. Do you agree? Explain why.	Dora is correct because 70 is not a multiple of 3 so when you divide 7 tens between 3 groups there will be one remaining which will be exchanged.	Eva has 96 sweets. She shares them into equal groups. She has no sweets left over. How many groups could Eva have shared her sweets into?	Possible answers $\begin{aligned} & 96 \div 1=96 \\ & 96 \div 2=48 \\ & 96 \div 3=32 \\ & 96 \div 4=24 \\ & 96 \div 6=16 \\ & 96 \div 8=12 \end{aligned}$
Use $<,>$ or $=$ to complete the statements. $\begin{aligned} & 69 \div 3 \bigcirc 96 \div 3 \\ & 96 \div 4 \bigcirc 96 \div 3 \\ & 91 \div 7 \bigcirc 84 \div 6 \end{aligned}$	$<$ $<$ $<$		

